CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Exercise 2

CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Exercise 2

Question 1.
Fill in the blanks choosing correct answer from the brackets:
(i) If A = tan-1 x, then the value of sin 2A = ________. (2x1x2, 2x1x2, 2x1+x2)
Solution:
2x1+x2

(ii) If the value of sin-1 x = π5 for some x ∈ (-1, 1) then the value of cos-1 x is ________. (3π10, 5π10,3π10)
Solution:
3π10

(iii) The value of tan-1 x (2cosπ3) is ________. (1, π4, π3)
Solution:
π4

(iv) If x + y = 4, xy = 1, then tan-1 x + tan-1 y = ________. (3π4, π4, π3)
Solution:
π2

(v) The value of cot-1 2 + tan-1 13 = ________. (π4, 1, π2)
Solution:
π4

(vi) The principal value of sin-1 (sin 2π3) is ________. (2π3, π3, 4π3)
Solution:
π3

(vii) If sin-1 x5 + cosec-1 54 = π2, then the value of x = ________. (2, 3, 4)
Solution:
x = 3

(viii) The value of sin (tan-1 x + tan-1 1x), x > 0 = ________. (0, 1, 1/2)
Solution:
1

(ix) cot-1 [1sinx+1+sinx1sinx1+sinx] = ________. (2π – x2, x2, π – x2)
Solution:
π – x2

(x) 2sin-1 45 + sin-1 2425 = ________. (π, -π, 0)
Solution:
π

(xi) if Θ = cos-1 x + sin-1 x – tan-1 x, x ≥ 0, then the smallest interval in which Θ lies is ________. [(π2, 3π2), [0, π2), (0, π2])
Solution:
(0, π2]

(xii) sec2 (tan-1 2) + cosec2 (cot-1 3) = ________. (16, 14, 15)
Solution:
15

Question 2.
Write whether the following statements are true or false.
(i) sin-1 1x cosec-1 x = 1
Solution:
False

(ii) cos-1 45 + tan-1 23 = tan-1 176
Solution:
True

(iii) tan-1 43 + cot-1 (34) = π
Solution:
True

(iv) sec-1 12 + cosec-1 12 = π2
Solution:
False

(v) sec-1 (-75) = π – cos-1 57
Solution:
True

(vi) tan-1 (tan 3) = 3
Solution:
False

(vii) The principal value of tan-1 (tan 3π4) is 3π4
Solution:
False

(viii) cot-1 (-√3) is in the second quadrant.
Solution:
True

(ix) 3 tan-1 3 = tan-1 913
Solution:
False

(x) tan-1 2 + tan-1 3 = – π4
Solution:
False

(xi) 2 sin-1 45 = sin-1 2425
Solution:
False

(xii) The equation tan-1 (cotx) = 2x has exactly two real solutions.
Solution:
True

Question 3.
Express the value of the folowing in simplest form.
(i) sin (2 sin-1 0.6)
Solution:
sin (2 sin-1 0.6)

(ii) tan (π4 + 2 cot-1 3)
Solution

:

(iii) cos (2 sin-1 x)

Solution:

(iv) tan (cos-1 x)
Solution:

(v) tan-1 (xy) – tan-1 xyx+y
Solution:

(vi) cosec (cos-1 35 + cos-1 45)
Solution:

(vii) sin-1 15 + cos-1 310
Solution:

(viii) sin cos-1 tan sec √2
Solution:
sin cos-1 tan sec √2
= sin cos-1 tan sec π4
= sin cos-1 1 = sin 0 = 0

(ix) sin (2 tan-1 1x1+x)
Solution:

(x) tan {12sin12x1+x2+12cos11y21+y2}
Solution:

(xi) sin cot-1 cos tan-1 x.
Solution:

(xii) tan-1 (x+1+x2)
Solution:

Question 4.
Prove the following statements:
(i) sin-1 35 + sin-1 817 = cos-1 3685
Solution:

L.H.S = sin-1 35 + sin-1 817

(ii) sin-1 35 + cos-1 1213 = cos-1 3365
Solution:

L.H.S = sin-1 35 + cos-1 1213

Or

Let α = sin-1 (3/5) and β = cos-1 (12/13).

Find cos α and sin β:
cos α = 4/5
sin β = 5/13

Calculate cos (α + β) using:
cos (α + β) = cos α cos βsin α sin β
cos (α + β) = 4/5 × 12/133/5 × 5/13 = 48/6515/65 = 33/65

Thus:
sin-1 (3/5) + cos-1 (12/13) = cos-1 (33/65)

(iii) tan-1 17 + tan-1 113 = tan-1 29
Solution:
L.H.S = tan-1 17 + tan-1 113

(iv) tan-1 12 + tan-1 15 + tan-1 18 = π4
Solution:

L.H.S = tan-1 12 + tan-1 15 + tan-1 18

(v) tan ( 2tan-1 15π4 ) + 717 = 0
Solution:

tan ( 2tan-1 15π4 ) + 717

CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.4(5.1)

Question 5.
Prove the following statements:
(i) cot-1 9 + cosec-1 414 = π4
Solution: L.H.S= cot-1 9 + cosec-1 414 

(ii) sin-1 45 + 2 tan-1 13 = π2
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.5(2.1)

(iii) 4 tan-1 15 – tan-1 170 + tan-1 199 = π4
Solution:

L.H.S

= 4 tan-1 15 – tan-1 170 + tan-1 199

CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.5(3.2)

(iv) 2 tan-1 15 + sec-1 527 + 2 tan-1 18 = π4
Solution:

2 tan-1 15 + sec-1 527 + 2 tan-1 18

CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.5(4.2)

(v) cos-1 1213 + 2 cos-1 6465 + cos-1 4950 = cos-1 12
Solution:

cos-1 1213 + 2 cos-1 6465 + cos-1 4950


(vi) tan2 cos-1 13 + cot2 sin-1 15 = 6
Solution:
tan2 cos-1 13 + cot2 sin-1 15
= tan2 tan-1 √2 + cot2 cot-1 (2)
= 2 + 4 = 6

(vii) cos tan-1 cot sin-1 x = x.
Solution.

Question 6.
Prove the following statements:
(i) cot-1 (tan 2x) + cot-1 (- tan 2x) = π
Solution:
L.H.S = cot-1 (tan 2x) + cot-1 (- tan 2x)

(ii) tan-1 x + cot-1 (x + 1) = tan-1 (x2 + x + 1)
Solution:

L.H.S = tan-1 x + cot-1 (x + 1)

(iii) tan-1 (ab1+ab) + tan-1 (bc1+bc) = tan-1 a – tan-1 c.
Solution:
tan-1 (ab1+ab) + tan-1 (bc1+bc)
= tan-1 a – tan-1 b + tan-1 b – tan-1 c
= tan-1 a – tan-1 c.

(iv) cot-1 pq+1pq + cot-1 qr+1qr + cot-1 rp+1rp = 0
Solution:

L.H.S = cot-1 pq+1pq + cot-1 qr+1qr + cot-1 rp+1rp

(v)
CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.6(5.1)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.6(5.3)

Question 7.
Prove the following statements:
(i) tan-1 2abb3 + tan-1 2baa3 = π3
Solution:

L.H.S = tan-1 2abb3 + tan-1 2baa3

(ii) tan-1 1x+y + tan-1 yx2+xy+1 = tan-1 1x
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.7(2.1)

(iii) sin-1 xqpq = cos-1 pxpq = cot-1 pxxq
Solution:

CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Ex 2 Q.7(3.2)

(iv) sin2 (sin-1 x + sin-1 y + sin-1 z) = cos2 (cos-1 x + cos-1 y + cos-1 z)
Solution:

L.H.S = sin2 (sin-1 x + sin-1 y + sin-1 z)

(v) tan (tan-1 x + tan-1 y + tan-1 z) = cot (cot-1 x + cot-1 y + cot-1 z)
Solution:

L.H.S = tan (tan-1 x + tan-1 y + tan-1 z)

Question 8.
(i) If sin-1 x + sin-1 y + sin-1 z = π, show that x1x2 + x1y2 + x1z2 = 2xyz
Solution:
Let sin-1 x = α, sin-1 y = β, sin-1 z = γ
∴ α + β + γ = π
∴ x = sin α, y = sin β, z = sin γ
or, α + β = π – γ
or, sin(α + β) = sin(π – γ) = sin γ
and cos(α + β) = cos(π – γ) = – cos γ

L.H.S = x1x2 + x1y2 + x1z2

(ii) tan-1 x + tan-1 y + tan-1 z = π show that x + y + z = xyz.
Solution:

Given , tan-1 x + tan-1 y + tan-1 z = π

(iii) tan-1 x + tan-1 y + tan-1 z = π2. Show that xy + yz + zx = 1
Solution:

Given ,tan-1 x + tan-1 y + tan-1 z = π2

or, 1 – xy – yz – zx = 0
⇒ xy + yz + zx = 1

(iv) If r2 = x2 +y2 + z2, Prove that tan-1 yzxr + tan-1 zxyr + tan-1 xyzr = π2
Solution:

L.H.S = tan-1 yzxr + tan-1 zxyr + tan-1 xyzr

(v) In a triangle ABC if m∠A = 90°, prove that tan-1 ba+c + tan-1 ca+b = π4. where a, b, and c are sides of the triangle.
Solution:
L.H.S. tan-1 ba+c + tan-1 ca+b

Question 9.
Solve
(i) cos (2 sin-1 x) = 1/9
Solution:

(ii) sin-1 x + sin-1 (1 – x) = π2
Solution:
sin-1 x + sin-1 (1 – x) = π2
or, sin-1 (1 – x) = π2 – sin-1 x = cos-1 x
or, sin-1 (1 – x) = sin-1 1x2
or, 1 – x = 1x2
or, 1 + x2 – 2x = 1 – x2
or, 2x2 – 2x = 0
or, 2x (x – 1) = 0
∴ x = 0 or, 1

(iii) sin-1 (1 – x) – 2 sin-1 x = π2
Solution:
sin-1 (1 – x) – 2 sin-1 x = π2
⇒ – 2 sin-1 x = π2 – sin-1 (1 – x)
⇒ cos-1 (1 – x)
⇒ cos (– 2 sin-1 x) = 1 – x ….. (1)
Let sin-1 Θ ⇒ sin Θ
Now cos (– 2 sin-1 x) = cos (-2Θ)
= cos 2Θ = 1 – 2 sin2 Θ = 1 – 2x2
Using in (1) we get
1 – 2x2 = 1 – x
⇒ 2x2 – x = 0 ⇒ x (2x – 1) = 0
⇒ x = 0, ½, But x = ½ does not
Satisfy the given equation, Thus x = 0.

(iv) cos-1 x + sin-1 x2 = π6
Solution:

(v) tan-1 x1x2 + tan-1 x+1x+2 = π4
Solution:

tan-1 x1x2 + tan-1 x+1x+2 = π4

(vi) tan-1 12x+1 + tan-1 14x+1 = tan-1 2x2
Solution:

tan-1 12x+1 + tan-1 14x+1 = tan-1 2x2

(vii) 3 sin-1 2x1+x2 – 4 cos-1 1x21+x2 + 2 tan-1 2x1x2 = π3
Solution:

3 sin-1 2x1+x2 – 4 cos-1 1x21+x2 + 2 tan-1 2x1x2 = π3

(viii) cot-1 1x1 + cot-1 1x + cot-1 1x+1 = cot-1 13x
Solution:

cot-1 1x1 + cot-1 1x + cot-1 1x+1 = cot-1 13x

(ix) cot-1 1x22x = cosec-1 1+a22a – sec-1 1+b21b2
Solution:

cot-1 1x22x = cosec-1 1+a22a – sec-1 1+b21b2

(x) sin-1 (2a1+a2) + sin-1 (2b1+b2) = 2 tan-1 x
Solution:

sin-1 (2a1+a2) + sin-1 (2b1+b2) = 2 tan-1 x

(xi) sin-1 y – cos-1 x = cos-1 32
Solution:

sin-1 y – cos-1 x = cos-1 32

(xii) sin-1 2x + sin-1 x = π3
Solution:

sin-1 2x + sin-1 x = π3

Question 10.
Rectify the error ifany in the following:
sin-1 45 + sin-1 1213 + sin-1 3365
Solution:

Question 11.
Prove that:
(i) cos-1 (b+acosxa+bcosx) = 2 tan-1 (aba+btanx2)
Solution:

(ii) tan (π4+12cos1ab) + tan (π412cos1ab)
Solution

(iii) tan-1 xryz + tan-1 yryx + tan-1 zrxy = π where r = x + y +z.
Solution:

Question 12.
(i) If cos-1 (xa) + cos-1 (yb) = Θ, prove that x2a22xab cos Θ + y2b2 = sin2 Θ.
Solution:

(ii) If cos-1 (xy) + cos-1 (y3) = Θ, prove that 9x2 – 12xy cos Θ + 4y2 = 36 sin2 Θ.
Solution:

(iii) If sin-1 (xa) + sin-1 (yb) = sin-1 (c2ab) prove that b2x2 + 2xy a2b2c4 a2y2 = c2
Solution:

(iv) If sin-1 (xa) + sin-1 (yb) = α prove that x2a2 + 2xyab cos α + y2b2 = sin2 α
Solution:

(v) If sin-1 x + sin-1 y + sin-1 z = π prove that x2 + y2 + z2 + 4x2y2z2 = 2 ( x2y2 + y2z2 + z2x2 )
Solution:

Question 13.
Solve the following equations:
(i) tan-1 x1x+1 + tan-1 2x12x+1 = tan-1 2336
Solution:

(ii) tan-1 13 + tan-1 15 + tan-1 17 + tan-1 x = π4
Solution:

(iii) cos-1 (x+12) + cos-1 x+ cos-1 (x12) = 3π2
Solution:

(iv) 3tan-1 12+3 – tan-1 1x = tan-1 13
Solution:

Leave a Comment