CHSE Odisha Class 12 Math Solutions Chapter 2 Inverse Trigonometric Functions Exercise 2
Question 1.
Fill in the blanks choosing correct answer from the brackets:
(i) If A = tan-1 x, then the value of sin 2A = ________. (
Solution:
(ii) If the value of sin-1 x =
Solution:
(iii) The value of tan-1 x (2cos
Solution:
(iv) If x + y = 4, xy = 1, then tan-1 x + tan-1 y = ________. (
Solution:
(v) The value of cot-1 2 + tan-1
Solution:
(vi) The principal value of sin-1 (sin
Solution:
(vii) If sin-1
Solution:
x = 3
(viii) The value of sin (tan-1 x + tan-1
Solution:
1
(ix) cot-1
Solution:
π –
(x) 2sin-1
Solution:
π
(xi) if Θ = cos-1 x + sin-1 x – tan-1 x, x ≥ 0, then the smallest interval in which Θ lies is ________. [(
Solution:
(0,
(xii) sec2 (tan-1 2) + cosec2 (cot-1 3) = ________. (16, 14, 15)
Solution:
15
Question 2.
Write whether the following statements are true or false.
(i) sin-1
Solution:
False
(ii) cos-1
Solution:
True
(iii) tan-1
Solution:
True
(iv) sec-1
Solution:
False
(v) sec-1 (-
Solution:
True
(vi) tan-1 (tan 3) = 3
Solution:
False
(vii) The principal value of tan-1 (tan
Solution:
False
(viii) cot-1 (-√3) is in the second quadrant.
Solution:
True
(ix) 3 tan-1 3 = tan-1
Solution:
False
(x) tan-1 2 + tan-1 3 = –
Solution:
False
(xi) 2 sin-1
Solution:
False
(xii) The equation tan-1 (cotx) = 2x has exactly two real solutions.
Solution:
True
Question 3.
Express the value of the folowing in simplest form.
(i) sin (2 sin-1 0.6)
Solution:
sin (2 sin-1 0.6)
(ii) tan (
Solution
:
(iii) cos (2 sin-1 x)
Solution:
(iv) tan (cos-1 x)
Solution:
(v) tan-1 (
Solution:
(vi) cosec (cos-1
Solution:
(vii) sin-1
Solution:
(viii) sin cos-1 tan sec √2
Solution:
sin cos-1 tan sec √2
= sin cos-1 tan sec
= sin cos-1 1 = sin 0 = 0
(ix) sin (2 tan-1
Solution:
(x) tan
Solution:
(xi) sin cot-1 cos tan-1 x.
Solution:
(xii) tan-1
Solution:
Question 4.
Prove the following statements:
(i) sin-1
Solution:
L.H.S = sin-1
(ii) sin-1
Solution:
L.H.S = sin-1
Or
Let α = sin-1 (3/5) and β = cos-1 (12/13).
Find cos α and sin β:
cos α = 4/5
sin β = 5/13
Calculate cos (α + β) using:
cos (α + β) = cos α cos β – sin α sin β
cos (α + β) = 4/5 × 12/13 – 3/5 × 5/13 = 48/65 – 15/65 = 33/65
Thus:
sin-1 (3/5) + cos-1 (12/13) = cos-1 (33/65)
(iii) tan-1
Solution:
L.H.S = tan-1
(iv) tan-1
Solution:
L.H.S = tan-1
(v) tan ( 2tan-1
Solution:
tan ( 2tan-1
Question 5.
Prove the following statements:
(i) cot-1 9 + cosec-1
Solution: L.H.S= cot-1 9 + cosec-1
(ii) sin-1
Solution:
(iii) 4 tan-1
Solution:
L.H.S
= 4 tan-1
(iv) 2 tan-1
Solution:
2 tan-1
(v) cos-1
Solution:
cos-1
(vi) tan2 cos-1
Solution:
tan2 cos-1
= tan2 tan-1 √2 + cot2 cot-1 (2)
= 2 + 4 = 6
(vii) cos tan-1 cot sin-1 x = x.
Solution.
Question 6.
Prove the following statements:
(i) cot-1 (tan 2x) + cot-1 (- tan 2x) = π
Solution:
L.H.S = cot-1 (tan 2x) + cot-1 (- tan 2x)
(ii) tan-1 x + cot-1 (x + 1) = tan-1 (x2 + x + 1)
Solution:
L.H.S = tan-1 x + cot-1 (x + 1)
(iii) tan-1 (
Solution:
tan-1 (
= tan-1 a – tan-1 b + tan-1 b – tan-1 c
= tan-1 a – tan-1 c.
(iv) cot-1
Solution:
L.H.S = cot-1
(v)
Solution:
Question 7.
Prove the following statements:
(i) tan-1
Solution:
L.H.S = tan-1
(ii) tan-1
Solution:
(iii) sin-1
Solution:
(iv) sin2 (sin-1 x + sin-1 y + sin-1 z) = cos2 (cos-1 x + cos-1 y + cos-1 z)
Solution:
L.H.S = sin2 (sin-1 x + sin-1 y + sin-1 z)
(v) tan (tan-1 x + tan-1 y + tan-1 z) = cot (cot-1 x + cot-1 y + cot-1 z)
Solution:
L.H.S = tan (tan-1 x + tan-1 y + tan-1 z)
Question 8.
(i) If sin-1 x + sin-1 y + sin-1 z = π, show that x
Solution:
Let sin-1 x = α, sin-1 y = β, sin-1 z = γ
∴ α + β + γ = π
∴ x = sin α, y = sin β, z = sin γ
or, α + β = π – γ
or, sin(α + β) = sin(π – γ) = sin γ
and cos(α + β) = cos(π – γ) = – cos γ
L.H.S = x
(ii) tan-1 x + tan-1 y + tan-1 z = π show that x + y + z = xyz.
Solution:
Given , tan-1 x + tan-1 y + tan-1 z = π
(iii) tan-1 x + tan-1 y + tan-1 z =
Solution:
Given ,tan-1 x + tan-1 y + tan-1 z =
or, 1 – xy – yz – zx = 0
⇒ xy + yz + zx = 1
(iv) If r2 = x2 +y2 + z2, Prove that tan-1
Solution:
L.H.S = tan-1
(v) In a triangle ABC if m∠A = 90°, prove that tan-1
Solution:
L.H.S. tan-1
Question 9.
Solve
(i) cos (2 sin-1 x) = 1/9
Solution:
(ii) sin-1 x + sin-1 (1 – x) =
Solution:
sin-1 x + sin-1 (1 – x) =
or, sin-1 (1 – x) =
or, sin-1 (1 – x) = sin-1
or, 1 – x =
or, 1 + x2 – 2x = 1 – x2
or, 2x2 – 2x = 0
or, 2x (x – 1) = 0
∴ x = 0 or, 1
(iii) sin-1 (1 – x) – 2 sin-1 x =
Solution:
sin-1 (1 – x) – 2 sin-1 x =
⇒ – 2 sin-1 x =
⇒ cos-1 (1 – x)
⇒ cos (– 2 sin-1 x) = 1 – x ….. (1)
Let sin-1 Θ ⇒ sin Θ
Now cos (– 2 sin-1 x) = cos (-2Θ)
= cos 2Θ = 1 – 2 sin2 Θ = 1 – 2x2
Using in (1) we get
1 – 2x2 = 1 – x
⇒ 2x2 – x = 0 ⇒ x (2x – 1) = 0
⇒ x = 0, ½, But x = ½ does not
Satisfy the given equation, Thus x = 0.
(iv) cos-1 x + sin-1
Solution:
(v) tan-1
Solution:
tan-1
(vi) tan-1
Solution:
tan-1
(vii) 3 sin-1
Solution:
3 sin-1
(viii) cot-1
Solution:
cot-1
(ix) cot-1
Solution:
cot-1
(x) sin-1
Solution:
sin-1
(xi) sin-1 y – cos-1 x = cos-1
Solution:
sin-1 y – cos-1 x = cos-1
(xii) sin-1 2x + sin-1 x =
Solution:
sin-1 2x + sin-1 x =
Question 10.
Rectify the error ifany in the following:
sin-1
Solution:
Question 11.
Prove that:
(i) cos-1
Solution:
(ii) tan
Solution
(iii) tan-1
Solution:
Question 12.
(i) If cos-1 (
Solution:
(ii) If cos-1 (
Solution:
(iii) If sin-1 (
Solution:
(iv) If sin-1 (
Solution:
(v) If sin-1 x + sin-1 y + sin-1 z = π prove that x2 + y2 + z2 + 4x2y2z2 = 2 ( x2y2 + y2z2 + z2x2 )
Solution:
Question 13.
Solve the following equations:
(i) tan-1
Solution:
(ii) tan-1
Solution:
(iii) cos-1
Solution:
(iv) 3tan-1
Solution: